EZ Statistics

Percentile, Quartile, and Interquartile Range (IQR)

Calculator

2. Select Column & Enter Percentile

Learn More

Percentiles, Quartiles, Percentile Ranks, and IQR

Definition

A percentile indicates the value below which a given percentage of observations fall in a dataset.Quartiles divide data into four equal parts, and a percentile rank represents the percentage of scores that fall below a particular value. The Interquartile Range (IQR) is the range between the 25th and 75th percentiles.

Key Formulas

Percentile (Linear Interpolation):

Rank=Percentile Rank(Sample Size1)100+1Percentile=xRank+(RankRank)(xRankxRank)\begin{align*} \text{Rank} &= \frac{\text{Percentile Rank} * (\text{Sample Size} - 1)}{100} + 1 \\ \text{Percentile} &= x_{\lfloor \text{Rank} \rfloor} + (\text{Rank} - \lfloor \text{Rank} \rfloor) * (x_{\lceil \text{Rank} \rceil} - x_{\lfloor \text{Rank} \rfloor}) \end{align*}

Percentile Rank:

PR=CF(0.5×F)N×100\text{PR} = \frac{CF - (0.5 \times F)}{N} \times 100
  • CF = cumulative frequency up to score
  • F = frequency of score
  • N = total number of scores

Quartiles:

Q1=P25 (First Quartile)Q2=P50 (Median)Q3=P75 (Third Quartile)IQR=Q3Q1 (Interquartile Range)\begin{align*} Q_1 &= P_{25} \text{ (First Quartile)} \\ Q_2 &= P_{50} \text{ (Median)} \\ Q_3 &= P_{75} \text{ (Third Quartile)} \\ IQR &= Q_3 - Q_1 \text{ (Interquartile Range)} \end{align*}

Examples

Percentile Calculation:

For dataset: [1,2,3,4,5,6,7,8,9,10][1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

25th Percentile:Rank=25(101)100+1=3.25P25=3+(3.253)(43)=3.25\begin{align*} \text{25th Percentile:} \\ \text{Rank} &= \frac{25 * (10 - 1)}{100} + 1 = 3.25 \\ P_{25} &= 3 + (3.25 - 3) * (4 - 3) = 3.25 \end{align*}

Percentile Rank Example:

For value 6 in dataset [1,2,3,4,5,6,7,8,9,10][1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

PR=60.510×100=55%PR = \frac{6 - 0.5}{10} \times 100 = 55\%

Interpretation Guide

Basic Concepts
  • 25th percentile (Q1): Lower quarter of data
  • 50th percentile (Q2): Median, typical value
  • 75th percentile (Q3): Upper quarter of data
Key Insights
  • IQR (Q3 - Q1) contains middle 50% of data
  • Equal quartile spacing suggests symmetry
  • Larger IQR indicates more variability
Outlier Detection

Potential outliers fall outside this range:[Q11.5×IQRQ3+1.5×IQR] \left[ Q1 - 1.5 \times IQR \text{, } Q3 + 1.5 \times IQR \right]

Applications & Uses

Common Applications
  • • Educational assessment scores
  • • Growth charts in healthcare
  • • Financial performance metrics
  • • Quality control measures
Distribution Analysis
  • • Data spread assessment
  • • Outlier identification
  • • Relative performance evaluation
  • • Box plot visualization

Limitations & Considerations

  • Different calculation methods may yield slightly different results
  • Small sample sizes can affect reliability
  • Outliers can significantly impact percentile ranks

Related Links

Mean, Median, Mode Calculator

Five-number Summary Calculator

Z-Score Calculator

Help us improve

Found an error or have a suggestion? Let us know!