EZ Statistics
EZStat

Percentile, Quartile, and Interquartile Range (IQR)

This Percentile, Quartile, and IQR Calculator helps you analyze the distribution and spread of your data. It calculates percentiles (values below which a given percentage of observations fall), quartiles (values that divide data into four equal parts), and the interquartile range (IQR, a measure of statistical dispersion). For example, you can analyze test scores to find the 75th percentile, determine salary quartiles, or use the IQR to identify outliers in any numerical dataset.

Quick Calculator

Need a quick calculation? Enter your numbers below:

Calculator

1. Load Your Data

2. Select Column & Enter Percentile

Learn More

Percentiles, Quartiles, Percentile Ranks, and IQR

Definition

A percentile indicates the value below which a given percentage of observations fall in a dataset.Quartiles divide data into four equal parts, and a percentile rank represents the percentage of scores that fall below a particular value. The Interquartile Range (IQR) is the range between the 25th and 75th percentiles.

Key Formulas

Percentile (Linear Interpolation):

Rank=Percentile Rank(Sample Size1)100+1Percentile=xRank+(RankRank)(xRankxRank)\begin{align*} \text{Rank} &= \frac{\text{Percentile Rank} * (\text{Sample Size} - 1)}{100} + 1 \\ \text{Percentile} &= x_{\lfloor \text{Rank} \rfloor} + (\text{Rank} - \lfloor \text{Rank} \rfloor) * (x_{\lceil \text{Rank} \rceil} - x_{\lfloor \text{Rank} \rfloor}) \end{align*}

Percentile Rank:

PR=CF(0.5×F)N×100\text{PR} = \frac{CF - (0.5 \times F)}{N} \times 100
  • CF = cumulative frequency up to score
  • F = frequency of score
  • N = total number of scores

Quartiles:

Q1=P25 (First Quartile)Q2=P50 (Median)Q3=P75 (Third Quartile)IQR=Q3Q1 (Interquartile Range)\begin{align*} Q_1 &= P_{25} \text{ (First Quartile)} \\ Q_2 &= P_{50} \text{ (Median)} \\ Q_3 &= P_{75} \text{ (Third Quartile)} \\ IQR &= Q_3 - Q_1 \text{ (Interquartile Range)} \end{align*}

Examples

Percentile Calculation:

For dataset: [1,2,3,4,5,6,7,8,9,10][1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

25th Percentile:Rank=25(101)100+1=3.25P25=3+(3.253)(43)=3.25\begin{align*} \text{25th Percentile:} \\ \text{Rank} &= \frac{25 * (10 - 1)}{100} + 1 = 3.25 \\ P_{25} &= 3 + (3.25 - 3) * (4 - 3) = 3.25 \end{align*}

Percentile Rank Example:

For value 6 in dataset [1,2,3,4,5,6,7,8,9,10][1, 2, 3, 4, 5, 6, 7, 8, 9, 10]:

PR=60.510×100=55%PR = \frac{6 - 0.5}{10} \times 100 = 55\%

Interpretation Guide

Basic Concepts
  • 25th percentile (Q1): Lower quarter of data
  • 50th percentile (Q2): Median, typical value
  • 75th percentile (Q3): Upper quarter of data
Key Insights
  • IQR (Q3 - Q1) contains middle 50% of data
  • Equal quartile spacing suggests symmetry
  • Larger IQR indicates more variability
Outlier Detection

Potential outliers fall outside this range:[Q11.5×IQRQ3+1.5×IQR] \left[ Q1 - 1.5 \times IQR \text{, } Q3 + 1.5 \times IQR \right]

Applications & Uses

Common Applications
  • • Educational assessment scores
  • • Growth charts in healthcare
  • • Financial performance metrics
  • • Quality control measures
Distribution Analysis
  • • Data spread assessment
  • • Outlier identification
  • • Relative performance evaluation
  • • Box plot visualization

Limitations & Considerations

  • Different calculation methods may yield slightly different results
  • Small sample sizes can affect reliability
  • Outliers can significantly impact percentile ranks

See Also

Help us improve

Found an error or have a suggestion? Let us know!