EZ Statistics

Standard Error Calculator

Calculator

2. Select Columns & Options

Learn More

Standard Error

Definition

The standard error (SE) is a measure of the variability of a sample statistic (such as the mean) across multiple samples. It indicates how precisely the sample statistic estimates the population parameter.

Key Formulas

Standard Error of the Mean:

SE=snSE = \frac{s}{\sqrt{n}}
  • s = sample standard deviation
  • n = sample size

Examples

Standard Error Calculation:

For dataset: [5,7,8,9,10][5, 7, 8, 9, 10]

Mean=5+7+8+9+105=7.8Standard Deviation=(57.8)2+(77.8)2+(87.8)2+(97.8)2+(107.8)2511.92Standard Error=1.9250.86\begin{align*} \text{Mean} &= \frac{5 + 7 + 8 + 9 + 10}{5} = 7.8 \\ \text{Standard Deviation} &= \sqrt{\frac{(5 - 7.8)^2 + (7 - 7.8)^2 + (8 - 7.8)^2 + (9 - 7.8)^2 + (10 - 7.8)^2}{5 - 1}} \approx 1.92 \\ \text{Standard Error} &= \frac{1.92}{\sqrt{5}} \approx 0.86 \end{align*}

Interpretation Guide

  • Smaller SE indicates more precise estimate
  • SE decreases as sample size increases
  • Used in constructing confidence intervals

Limitations & Considerations

  • Assumes random sampling
  • Affected by outliers and non-normal distributions
  • May not be reliable for very small samples

Related Links

Mean, Median, Mode Calculator

Range, Variance, Standard Deviation Calculator

Help us improve

Found an error or have a suggestion? Let us know!